Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
PLoS Comput Biol ; 19(1): e1010860, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2214714

RESUMEN

The COVID-19 pandemic is challenging nations with devastating health and economic consequences. The spread of the disease has revealed major geographical heterogeneity because of regionally varying individual behaviour and mobility patterns, unequal meteorological conditions, diverse viral variants, and locally implemented non-pharmaceutical interventions and vaccination roll-out. To support national and regional authorities in surveilling and controlling the pandemic in real-time as it unfolds, we here develop a new regional mathematical and statistical model. The model, which has been in use in Norway during the first two years of the pandemic, is informed by real-time mobility estimates from mobile phone data and laboratory-confirmed case and hospitalisation incidence. To estimate regional and time-varying transmissibility, case detection probabilities, and missed imported cases, we developed a novel sequential Approximate Bayesian Computation method allowing inference in useful time, despite the high parametric dimension. We test our approach on Norway and find that three-week-ahead predictions are precise and well-calibrated, enabling policy-relevant situational awareness at a local scale. By comparing the reproduction numbers before and after lockdowns, we identify spatially heterogeneous patterns in their effect on the transmissibility, with a stronger effect in the most populated regions compared to the national reduction estimated to be 85% (95% CI 78%-89%). Our approach is the first regional changepoint stochastic metapopulation model capable of real time spatially refined surveillance and forecasting during emergencies.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Teorema de Bayes , Pandemias , Concienciación , Control de Enfermedades Transmisibles , Predicción
2.
Front Microbiol ; 13: 973257, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2029968

RESUMEN

Invasive Haemophilus influenzae (Hi) disease has decreased in countries that included Hi type b (Hib) vaccination in their childhood immunization programs in the 1990s. Non-typeable (NT) and non-b strains are now the leading causes of invasive Hi disease in Europe, with most cases reported in young children and the elderly. Concerningly, no vaccines toward such strains are available and beta-lactam resistance is increasing. We describe the epidemiology of invasive Hi disease reported to the Norwegian Surveillance System for Communicable Diseases (MSIS) (2017-2021, n = 407). Whole-genome sequencing (WGS) was performed on 245 isolates. We investigated the molecular epidemiology (core genome phylogeny) and the presence of antibiotic resistance markers (including chromosomal mutations associated with beta-lactam or quinolone resistance). For isolates characterized with both WGS and phenotypic antibiotic susceptibility testing (AST) (n = 113) we assessed correlation between resistance markers and susceptibility categorization by calculation of sensitivity, specificity, and predictive values. Incidence rates of invasive Hi disease in Norway ranged from 0.7 to 2.3 per 100,000 inhabitants/year (mean 1.5 per 100,000) and declined during the COVID-19 pandemic. The bacterial population consisted of two major phylogenetic groups with subclustering by serotype and multi-locus sequence type (ST). NTHi accounted for 71.8% (176). The distribution of STs was in line with previous European reports. We identified 13 clusters, including four encapsulated and three previously described international NTHi clones with bla TEM-1 (ST103) or altered PBP3 (rPBP3) (ST14/IIA and ST367/IIA). Resistance markers were detected in 25.3% (62/245) of the isolates, with bla TEM-1 (31, 50.0%) and rPBP3 (28, 45.2%) being the most frequent. All isolates categorized as resistant to aminopenicillins, tetracycline or chloramphenicol possessed relevant resistance markers, and the absence of relevant substitutions in PBP3 and GyrA/ParC predicted susceptibility to cefotaxime, ceftriaxone, meropenem and quinolones. Among the 132 WGS-only isolates, one isolate had PBP3 substitutions associated with resistance to third-generation cephalosporins, and one isolate had GyrA/ParC alterations associated with quinolone resistance. The detection of international virulent and resistant NTHi clones underlines the need for a global molecular surveillance system. WGS is a useful supplement to AST and should be performed on all invasive isolates.

3.
Infect Dis (Lond) ; 54(1): 72-77, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1455199

RESUMEN

BACKGROUND: Information about the contagiousness of new SARS-CoV-2 variants, including the alpha lineage, and how they spread in various locations is essential. Country-specific estimates are needed because local interventions influence transmissibility. METHODS: We analysed contact tracing data from Oslo municipality, reported from January through February 2021, when the alpha lineage became predominant in Norway and estimated the relative transmissibility of the alpha lineage with the use of Poisson regression. RESULTS: Within households, we found an increase in the secondary attack rate by 60% (95% CI 20-114%) among cases infected with the alpha lineage compared to other variants; including all close contacts, the relative increase in the secondary attack rate was 24% (95% CI -6%-43%). There was a significantly higher risk of infecting household members in index cases aged 40-59 years who were infected with the alpha lineage; we found no association between transmission and household size. Overall, including all close contacts, we found that the reproduction number among cases with the alpha lineage was increased by 24% (95% CI 0%-52%), corresponding to an absolute increase of 0.19, compared to the group of index cases infected with other variants. CONCLUSION: Our study suggests that households are the primary locations for rapid transmission of the new lineage alpha.


Asunto(s)
COVID-19 , SARS-CoV-2 , Trazado de Contacto , Humanos , Incidencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA